
■ Related papers: summary (key contribution), merits, demerits

No Category Year
Conf &

Journal
Title Summary (Key contribution) Strong Point Weak Point

1 Conf 1999 ATC
Improving Application Performance

through Swap Compression

The performance of large applications tends to be poor due to the high overhead added by the

swapping mechanism. The same problem may be found in highly-loaded multi-programmed

systems where many of the running applications have to use the swap space in order to be able

to execute at the same time. Furthermore, those large applications might not be able to run on

laptop or home computers as their resources are usually smaller than the ones found in an office

system. In this paper, they present a solution to both problems that they have implemented in

the Linux kernel. The idea consists of compressing the swapped pages and keeping them in a

swap cache whenever possible.

compressing memroy capacity

2 Journal 2005 IWSSPS FASS : A Flash-Aware Swap System

This paper mainly focuses on the swap system running over flash memory. they discuss design

and implementation of flash-aware swap system, called FASS, where the kernel manages flash

memory-based swap space directly without FTL. This approach can utilize kernel information and

flash memory states to optimize the system.

nand aware nand speed

3 Journal 2008 ICCSA
A New Linux Swap System for Flash Memory

Storage Devices

This paper presents a new Linux swap system considering flash memory as a swap storage.

Especially they focus on the garbage collection performance and reduce the number of erasures

and the number of data copies due to garbage collection.

reduce nand io nand speed

4 Conf 2009 OLS Transcendent Memory (tmem) and Linux

Transcendent Memory (tmem for short) is a new approach to optimize RAM utilization in a virtual

environment. Underutilized RAM from each guest, plus RAM unassigned to any guest (fallow

memory), is collected into a central pool. Indirect access to that RAM is then provided by the

VMM through a carefully crafted, page-copy-based interface. Linux kernel changes are required

but are relatively small and not only provide valuable information to the VMM, but also furnish

additional “magic” memory to the kernel, provide performance benefits in the form of reduced

I/O, and mitigate some of the issues that arise from ballooning/hotplug.

ballooning/hotplug

(tmem pool, pre-cache,

preswap, compcache)

memory capacity

5 Conf 2010 ATC
FlashVM: Virtual Memory Management on

Flash

With the decreasing price of flash memory, systems will increasingly use solid-state storage for

virtual-memory paging rather than disks. FlashVM is a system architecture and a core virtual

memory subsystem built in the Linux kernel that uses dedicated flash for paging. FlashVM focuses

on three major design goals for memory management on flash: high performance, reduced flash

theyar out for improved reliability, and efficient garbage collection. FlashVM modifies the paging

system along code paths for allocating, reading and writing back pages to optimize for the

performance characteristics of flash.

nand performance nand cost

6 Journal 2010 Korea conf
A flash memory swap system for mobile

computers

They study proposes a new Linux swap system called PASS (process-aware swap system), which

allocates the different flash memory blocks to each process. Trace-driven experimental resut show

that PASS outperforms existing linux swap system with existing garbage collection schemes in

terms of grabage collection cost.

process aware
nand speed

(Korean conf.)

7 Journal 2010 TCE

Swap Space Management Technique for

Portable Consumer Electronics with NAND

Flash Memory

In order to manage swap space efficiently, this paper presents a novel garbage collection policy

for the portable consumer electronics with a swap system. The proposed policy has three features

important in NAND flash memory based swap systems: (1) long endurance of NAND flash

memory, (2) quick garbage collection, and (3) low energy consumption.

nand aware nand speed

8 Journal 2010 TCE
An efficient garbage collection for flash

memory-based virtual memory systems

This paper proposes a novel garbage collection technique which exploits data redundancy

between the main memory and flash memory in flash memory-based virtual memory systems.

Compared to the previous approach, our proposed scheme takes into consideration the locality of

data to minimize the garbage collection overhead. In addition, by considering the computational

overhead of the garbage collection algorithm, we also propose an adaptive scheme which can

minimize the computational overhead with marginal I/O performance degradation.

minimize garbage collection

of nand
nand speed

14 Conf 2011 FAST
 Fast: Quick application launch on solid-state

drives

Application launch performance is of great importance to system platform developers and

vendors as it greatly affects the degree of users' satisfaction. The single most effective way to

improve application launch performance is to replace a hard disk drive (HDD) with a solid

state drive (SSD), which has recently become affordable and popular. A natural question is

then whether or not to replace the traditional HDD-aware application launchers with a new

SSD-aware optimizer.

SSD-aware optimization SSD is targeted to server

9 Journal 2012 TCE
Compressed Memory Swap for QoS

of Virtualized Embedded Systems

This paper presents an in-memory compressed swap device (CSW) for the virtualized consumer

electronics environment. It swaps out only the memory of third-party applications in response to

memory pressure on the main applications, to ensure its quality of service.

memroy based swap memory space

10 Journal 2012 TCE
Flash-aware linux swap system for portable

consumer electronics

This paper proposes a flash-aware Linux swap system, called FLSS, which adopts Linux kernel 2.6

to manage flash memory-based swap space directly without FTL. We introduce: 1) a partial block

alignment scheme to perform an efficient swap-in read-ahead algorithm, 2) a swap-aware victim

block selection method and the redefined concept of hot page and cold page to design a swap-

aware garbage collection policy called SACATA, and 3) the notion of overage as well as the notion

of frozen applied to blocks to exploit a wear leveling-aware block management scheme.

swap-aware garbage

collection
nand speed

11 Journal 2012 TCE
Greedy page replacement algorithm for

flash-aware swap system

This paper presents a greedy page replacement algorithm, called GDLRU, for flash-aware swap

system. In order to reduce the number of flash page write operations, GDLRU introduces a clean-

aware victim page selection method called CPS which evicts clean page preferentially. If there is

no clean page, CPS evicts the dirty page with the least dirty data preferentially. To further reduce

the number of flash page write operations, GDLRU also introduces a clean-aware victim page

update scheme called CPU which only writes back the dirty flash pages within the victim dirty

page.

nand aware nand speed

12 Conf 2012 MobiSys
Fast app launching for mobile devices using

predictive user context

This paper has designed and built FALCON to remedy slow app launch. FALCON uses contexts

such as user location and temporal access patterns to predict app launches before they occur.

FALCON then provides systems support for effective app-specific prelaunching, which can

dramatically reduce perceived delay. FALCON uses novel features derived through extensive data

analysis, and a novel cost-benefit learning algorithm that has strong predictive performance and

low runtime overhead. Trace-based analysis shows that an average user saves around 6 seconds

per app startup time with daily energy cost of no more than 2% battery life, and on average gets

content that is only 3 minutes old at launch without needing to wait for content to update.

Trace-based analysis,

app-specific prelaunching

Does not handle memry

contension

13 Conf 2013 SysTor
Linux Block IO: Introducing Multi-queue SSD

Access On Multi-core Systems

In this work, we demonstrate that the block layer within the operating system, originally designed

to handle thousands of IOPS, has become a bottleneck to overall storage system performance,

specially on the high NUMA-factor processors systems that are becoming commonplace. We

describe the

design of a next generation block layer that is capable of handling tens of millions of IOPS on a

multi-core system equipped with a single storage device.

Multi-queue Not small scale

15 Journal 2014 EMSoft

Building High-Performance Smartphones

via Non-Volatile Memory: The Swap

Approach

They revisit swapping for smartphones with fast, byte-addressable, non-volatile memory (NVM)

technologies. Instead of using flash, they build the swap area with NVM, to allow high

performance without sacrificing user experience. Based on NVM’s high performance and byte-

addressability, they show that a copy-on-write swap-in scheme can achieve even better

performance by avoiding unnecessary memory copy operations.

reduce mem copy nvm cost

16 Journal 2014 ISLPED
DR. Swap: Energy-Efficient Paging for

Smartphones

They propose DR. Swap, an energy-efficient paging design to reduce energy consumption in

smartphones. they adopt emerging energy-efficient non-volatile memory (NVM) and use it as the

swap area. Utilizing NVM’s byte-addressability, we propose direct read which guarantees zero-

copy for readonly pages in the swap area.

energy-efficent paging with

nvm
nvm cost

17 Journal 2014 SIGPLAN Notice
VSWAPPER: A Memory Swapper for

Virtualized Environments

This paper addresses these problems by implementing VSWAPPER, a guest-agnostic memory

swapper for virtual environments that allows efficient, uncooperative overcommitment. With

inactive ballooning, VSWAPPER yields up to an order of magnitude performance improvement.

Combined with ballooning, VSWAPPER can achieve up to double the performance under

changing load conditions.

performance in virt swap io speed

18 Journal 2014 TCE

Compressed and shared swap to extend

available memory in virtualized consumer

electronics

This paper proposes a new swap mechanism for virtualized CE devices with flash memory. This

proposed mechanism reduces memory consumption by compressing and sharing unused pages.

This swap mechanism stores the unused page in memory of another VM, to increase the available

memory of the original VM. The proposed swap mechanism is implemented on the Xen

hypervisor and Linux.

compressing unused pages decompressing cost

19 Journal 2014 TCE

Swap-aware garbage collection algorithm

for NAND flash-based consumer

electronics

In order to reduce the energy consumption, this paper proposes a swap-aware garbage collection

algorithm for NAND flash-based consumer electronics. The proposed algorithm focuses on

reducing the garbage collection overhead and improving the endurance of NAND flash memory.

energy aware garbage

colleciton
nand speed

20 Conf 2015 VEE
GPUswap: Enabling Oversubscription of GPU

Memory through Transparent Swapping

In this paper, they present GPUswap, a novel approach to enabling oversubscription of GPU

memory that does not rely on software scheduling of GPU kernels. GPUswap uses the GPU’s

ability to access system RAM directly to extend the GPU’s own memory. To that end, GPUswap

transparently relocates data from the GPU to system RAM in response to memory pressure.

GPUswap ensures that all data is permanently accessible to the GPU and thus allows applications

to submit commands to the GPU directly at any time, without the need for software scheduling.

GPU memory for system memory space shortage

21 Conf 2015 HPCC
SwapBench: The Easy Way to Demystify

Swapping in Mobile Systems

Mobile systems such as smartphones and tablets are re-adopting swapping—a mature but by

rarely used OS feature—to extend memory capacity without adding more DRAM, especially low-

end devices.This paper proposes an evaluation framework, SwapBench, to appraise swap schemes

and focus on two important but overlooked metrics: application launch and switch. Cross-

validation with microbenchmarks shows that SwapBench is accurate. Based on the findings from

SwapBench, we further discuss the impacts of different approaches to swapping in mobile

systems.

swap evaluation framework No contribution

22 Conf 2015 ATC
Memory-Centric Data Storage for Mobile

Systems

To improve both app responsiveness and energy efficiency, this paper proposes MobiFS, a

memory-centric design for smartphone data storage. This design no longer exercises cache

writeback at short fixed periods or on file synchronization calls. Instead, it incrementally

checkpoints app data into flash at appropriate times, as calculated by a set of app/user-adaptive

policies. MobiFS also introduces transactions into the cache to guarantee data consistency. This

design trades off data staleness for better app responsiveness and energy efficiency, in a

quantitative manner.

Flash-centric

Incremental checkpointing
Not handle Launching time

23 Conf 2015 MobiSys
Reducing smartphone application delay

through read/write isolation

They observe that reads experience up to 626% slowdown when blocked by concurrent writes for

certain workloads. Additionally, we show the asymmetry of the slowdown of one I/O type due to

another, and elaborate the speedup of concurrent I/Os over serial ones. We use this obtained

knowledge to design and implement a system prototype called SmartIO that reduces the

application delay by prioritizing reads over writes, and grouping them based on assigned

priorities. SmartIO issues I/Os with optimized concurrency parameters.

Prioritize reads over writes,

and grouping them
Concurrent wite cases

24 Conf 2016 ATC
An Evolutionary Study of Linux Memory

Management for Fun and Profit

they present a comprehensive and quantitative study on the development of the Linux memory

manager. The study examines 4587 committed patches over the last five years (2009-2015) since

Linux version 2.6.32. Insights derived from this study concern the development process of the

virtual memory system, including its patch distribution and patterns, and techniques for memory

optimizations and semantics. Specifically, they find that the changes to memory manager are

highly centralized around the key functionalities, such as memory allocator, page fault handler

and memory resource controller.

memory manager memory space shortage

25 Conf 2016 ccgrid
CloudSwap: A Cloud-Assisted Swap

Mechanism for Mobile Devices

They propose CloudSwap, a fast and robust swap mechanism for mobile devices to enable the

memory noblivious application caching. The key idea of CloudSwap is to use the fast local storage

as a cache of read-intensive swap pages, while storing prefetch-enabled, write-intensive swap

pages in a cloud storage. To preserve the lifespan of the local storage, CloudSwap minimizes the

number of writes to the local storage by storing the modified portions of the locally swapped

pages in a cloud.

fast local storage for read-

intensive swap pages

cloud swap's speed and

security

26 Journal 2016 EMSoft
The Design of an Efficient Swap Mechanism

for Hybrid DRAM-NVM Systems

This paper analyzes the data accesses features of different applications . Then, a swap mechanism,

called Refinery Swap, is proposed to improve the performance of the system, reduce energy

consumption, and increase the lifetime of NVM simultaneously. Refinery Swap presented two

algorithms to exploit the data access features of applications and the characteristics of different

kinds of memory medias.

reduce mem copy nvm cost

27 Journal 2016 TCE
In-Memory File System with Efficient Swap

Support for Mobile Smart Devices

This paper propsoes a new in-memory file system is devised to improve the current swap

mechanism in the legacy in-memory file system, whereby strip-based layouts with separated file-

swap partitions are used and unnecessary file-I/O overheads are eliminated. To evaluate the

proposed in-memory file system, experiments with the file-I/O benchmark were conducted. The

experiment results show that, compared to the current swap scheme, the proposed swap scheme

improves the overall performance by ten times on average.

in-memory swap memory space

28 COnf 2016 MicroCom

Optimize In-Kernel Swap Memory By

Avoiding

Duplicate Swap Out Pages (4 pages)

In-kernel memory swapping is a Linux feature which creates RAM based swap area and provides a

form of virtual memory compression. It increases performance by using a compressed block

device in RAM for paging instead of disk. This paper proposes a new mechanism to avoid

duplicate compressed pages swapped to the In-RAM swap area. Experiments have assured

increase in the available physical memory and there by improved the performance of applications

even at low memory conditions.

swap compression ram limitation

29 Others 2016 lwn.net
Making swapping scalable

https://lwn.net/Articles/704478/

If swapping can be made fast enough, the performance penalty for overcommitting memory

becomes insignificant, leading to better utilization of the system as a whole.

Skip read ahead for

unreferenced swap slots, Add

cache for swap slots allocation

Focus on cloud environment

30 Journal 2016 TECS

SmartLMK: A memory reclamation scheme

for improving user-perceived app launch

time

This paper proposes a novel memory reclamation scheme called SmartLMK. SmartLMK minimizes

the impact of the process-level reclamation on user experience. The worthiness to keep an app in

memory is modeled by means of user-perceived app launch time and app usage statistics. The

memory footprint and impending memory demand are estimated from the history of the memory

usage. Using these values and memory models, SmartLMK picks up the least valuable apps and

terminates them at once.

app launch time and app

usage statiscis analysis

additional cost to collect app

usage statistics

31 Conf 2017 FAST

FlashBlox: Achieving Both Performance

Isolation and Uniform Lifetime for Virtualized

SSDs

they propose utilizing flash parallelism to improve isolation bettheyen virtual SSDs by running

them on dedicated channels and dies. Furthermore, they offer a complete solution by also

managing the theyar. they propose allowing the theyar of different channels and dies to diverge

at fine time granularities in favor of isolation and adjusting that imbalance at a coarse time

granularity in a principled manner.

parallelism ssd speed

32 Conf 2017 NSDI
Efficient Memory Disaggregation with

Infiniswap

This paper describes the design and implementation of INFINISWAP, a remote memory paging

system designed specifically for an RDMA network. INFINISWAP opportunistically harvests and

transparently exposes unused memory to unmodified applications by dividing the swap space of

each machine into many slabs and distributing them across many machines’ remote memory.

Because one-sided RDMA operations bypass remote CPUs, INFINISWAP leverages the potheyr of

remote paging system swap speed

33 Journal 2017 IEEE ACCESS

Maintaining Application Context of

Smartphones by Selectively Supporting

Swap and Kill

This article proposes a selective swap scheme that classifies applications based on their context-

saving characteristics, and controls the number of processes involved in swap by monitoring

system situations and application characteristics.

selective swap& kill monitoring cost

34 Journal 2017 ISCE
Performance study and analysis of D-SWAP

for mobile communication networks

In this paper, a mathematical analysis model is developed to demonstrate the performance of the

newly proposed D-SWAP power-saving mechanism. The analyzed performance focuses on the

average power consumption and average packet delay. The analysis and simulation results

demonstrate that the proposed D-SWAP can concurrently satisfy the trade-off requirements of

low average power consumption and low average packet delay.

power saving swap speed

35 Conf 2017 DAC

SmartSwap: High-Performance and User

Experience Friendly Swapping in Mobile

Systems (6 pages)

Most mobile systems have limited memory space, which in turn affects user satisfaction. For

example, application response time could become longer due to limited memory capacity.

Swapping is an effective way to extend memory capacity, but often lead to poor performance in

smartphones. This paper proposes predictive process-level swapping that predicts the most rarely

used (MRU) applications and dynamically swaps processes ahead-of-time. Trace-based evaluations

show up to 30% increase in application launch performance compared to the worst case brought

by flash-based swap.

predictive process-level swap

technique (Most rarely used

(MRU) and Ahead-of-time

swap)

swap speed, nand lifespan

36 Journal 2018 TECS
Application-Aware Swapping for Mobile

Systems

This paper proposes a novel scheme to properly harness the swapping to mobile systems. They

identify that a vast amount of I/O for swapping comes from the conflict of the traditional page-

level approach of the swapping and the process-level memory management scheme tailored to

mobile systems. Moreover, they find out that the current victim page selection policy is not

effective due to the process-level policy.

app aware approach

(김진수 교수랩)
swap speed

37 Others 2018 lwn.net
The final step for huge-page swapping

https://lwn.net/Articles/758677/

The use of huge pages can improve the performance of the system significantly. This patch is

merged in 4.14, further delayed the splitting until the huge page had actually been written to the

swap device, again improving performance through better batching and by writing the entire

huge page as a unit.

Improve P/F with huge pages The splitting of huge pages

38 Journal 2018 IEEE ACCESS

 A Hybrid Swapping Scheme Based On Per-

Process Reclaim for Performance

Improvement of Android Smartphones

This paper proposes a hybrid swapping scheme based on per-process reclaim that supports both

secondary-storage swapping and zRAM swapping. It attempts to swap out all the pages in the

working set of a process to a zRAM swap space rather than killing the process selected by a low-

memory killer, and to swap out the least recently used pages into a secondary storage swap

space. The main reason being is that frequently swapin/out pages use the zRAM swap space

while less frequently swap-in/out pages use the secondary storage swap space, in order to reduce

the page operation cost. Our scheme resolves both the response time and wear-out problems of

secondary-storage swapping and zSWAP, and overcomes the size limitation of the zRAM swap

zRAM/zSWAP with per-

process

SWAP cost (io scheduling,

battery consumption)

SWAP in/out cost

39 Conf 2018 ATC

FastTrack: Foreground App-Aware I/O

Management for Improving User

Experience of Android Smartphones

This paper proposes a foreground app-aware I/O management scheme, called FastTrack, that

accelerates foreground I/O requests by 1) preempting background I/O requests in the entire I/O

stacks including the storage device and 2) preventing foreground app’s data from being flushed

from the page cache.

foreground app-aware I/O

management

emulating the storage

device for evaluation

40 Journal 2019 IEEE ACCESS
ezswap: Enhanced Compressed Swap

Scheme for Mobile Devices

To overcome the aforementioned problems and maximize the memory efficiency, they propose a

compressed swap scheme, called enhanced zswap (ezswap), for mobile devices. ezswap

accommodates not only anonymous pages, but also clean file-mapped pages.

dram-based swap

Clean file-mapped-page

Beneficial compression ratios

dram space

41 Conf 2020 ATC

End the Senseless Killing: Improving

Memory Management for Mobile

Operating Systems (Marvin)

This paper presents Marvin, a new memory manager for mobile platforms that efficiently supports

swapping while meeting the strict performance requirements of mobile apps. Marvin’s swap-

enabled language runtime is co-designed with OS-level memory management to avoid common

pitfalls of traditional swap mechanisms. Its key features are: (1) a new swap mechanism, called

ahead-of-time (AOT) swap, which pre-writes memory to disk, then harvests it quickly when

needed, (2) a modified bookmarking garbage collector that avoids swapping in unused memory,

and (3) an object-granularity working set estimator.

AOT SWAP, Bookmarking,

W/S Estimator
swap speed

42 Conf 2020 ATC
Effectively Prefetching Remote Memory with

Leap

In this paper, they propose Leap, a prefetching solution for remote memory accesses due to

memory disaggregation. At its core, Leap employs an online, majority-based prefetching

algorithm, which increases the page cache hit rate. they complement it with a lighttheyight and

efficient data path in the kernel that isolates each application’s data path to the disaggregated

memory and mitigates latency bottlenecks arising from legacy throughput-optimizing operations.

prefetching memory space shortage

43 Conf 2020 SAC
An Efficient Garbage Collection in Java

Virtual Machine via Swap I/O Optimization

Various applications, frameworks, and services are built on Java Virtual Machine (JVM) (e.g., Big

data analytics) due to its crossplatform portability. Hotheyver, many of them suffer from long

latency of Garbage Collection (GC) which also drops throughput, efficiency, and availability of the

system. In this paper, they present a performance analysis of the existing GC policy in JVM. Based

on the result of analysis, they propose an efficient GC scheme to improve the GC performance via

swap I/O

optimization to complement the existing GC policy. In this scheme, they selectively compact JVM

heap by interacting with OS swap system during GC.

efficient GC scheme swap speed

44 Conf 2020 ICCE
Enhanced Flash Swap: Using NAND Flash

As a Swap Device with Lifetime Control

This paper proposes a new solution, Enhanced Flash Swap (EFS). EFS uses NAND flash

as a swap device with a careful control of its lifetime. This paper introduces several techniques to

address the issue of lifetime on flash-based swap, including deduplication, compression, buffering

and physical block management.

nand aware nand speed

45 Journal 2020 IEEE ACCESS
Analysis of Smartphone I/O Characteristics

Toward Efficient Swap in a Smartphone

They present a new architecture that adopts non-volatile memory at the Android swap layer.

Specially, as Android swap has bimodal data access characteristics, they identify and manage hot

and cold data ef ciently by making use of precise admission control and replacement algorithms.

specify hot & cold data nvm capacity (price)

46 Conf 2020 PACT

DeepSwapper: A Deep Learning Based Page

Swap Management Scheme for Hybrid

Memory Systems (2 pages, Poster)

This paper introduces DeepSwapper, a deep learning-based page swap management scheme that

utilizes RNN to perform fast, energy-efficient, and temperature-aware page swapping in hybrid

memory systems. DeepSwapper comprises of LSTM units of RNN model to predict the future

memory accesses to guide its swap management scheme, a dynamic page swap management

scheme that utilizes DRAM capacity efficiently by enabling hot pages in a swap group to be

swapped with cold pages of another swap group, and a temperature-aware page swap

management scheme, which first predicts the future writes to NVM pages and then, decides to

migrate those pages with frequent writes in hot NVM banks to DRAM to enhance the NVM

lifetime.

Dynamic swap for RNN/LSTM,

Temperature-aware
swap speed

47 Conf 2020 ATC

Acclaim: Adaptive Memory Reclaim to

Improve User Experience in Android

Systems

This paper shows that the current memory reclaim scheme cannot deliver its desired performance

due to two key reasons: page re-fault, which occurs when an evicted page is demanded again

soon after, and direct reclaim, which occurs when the system needs to free up pages upon

request time. Unlike the server workload where the direct reclaim happens infrequently, multiple

direct reclaims can happen in many common Android use cases. We provide further analysis that

identifies the major sources of the high number of page re-faults and direct reclaims and propose

Acclaim, a foreground aware and size-sensitive reclaim scheme. Acclaim consists of two parts:

foreground aware eviction (FAE) and lightweight prediction-based reclaim scheme (LWP). FAE is

used to relocate free pages from background applications to foreground applications. While LWP

dynamically tunes the size and the amount of background reclaims according to the predicted

allocation workloads.

Foreground-aware eviction,

Lightweight prediction-based

reclaim scheme

(mobile-aware page reclaim)

memory capacity

48 Conf 2021 ATC
ASAP: Fast Mobile Application Switch via

Adaptive Prepaging

 This paper identifies conventional demand paging as the primary source of this inefficiency and

proposes ASAP, a mechanism for fast application switch via adaptive prepaging on mobile

devices. ASAP performs prepaging by combining i) high-precision switch footprint estimators for

both file-backed and anonymous pages, and ii) efficient implementation of the preparing

mechanism to minimize resource waste for CPU cycles and disk bandwidth during an application

switch. Our evaluation using eight real-world applications on Google Pixel 4 and Pixel 3a

demonstrates that ASAP can reduce the switch time by 22.2% and 28.3% on average, respectively

(with a maximum of 33.3% and 35.7%, respectively), over the vanilla android 10.

Propose adaptive prepaging

for mobile device. reducing

latency of application switch

to improve UX of

smartphones

Predicting is difficult to do

prepaging

49 Conf 2017 ATC
Improving user perceived page load times

using gaze

We take a fresh look at Web page load performance from the point of view of user

experience. Our user study shows that perceptual performance, defined as user-perceived

page load time (uPLT) poorly correlates with traditional page load time (PLT) metrics.

However, most page load optimizations are designed to improve the traditional PLT metrics,

rendering their impact on user experience uncertain. Instead, we present WebGaze, a

system that specifically optimizes for the uPLT metric.

user-perceived page loading web-centric evaluation

50 Conf 2019 ATC

 Asynchronous I/O stack:

A low-latency kernel I/O stack for ultra-low

latency

SSDs

Today's ultra-low latency SSDs can deliver an I/O latency of sub-ten microseconds. With this

dramatically shrunken device time, operations inside the kernel I/O stack, which were

traditionally considered lightweight, are no longer a negligible portion. This motivates us to

reexamine the storage I/O stack design and propose an asynchronous I/O stack (AIOS),

where synchronous operations in the I/O path are replaced by asynchronous ones to

overlap I/O-related CPU operations with device I/O.

Asynchronous I/O stack nand speed

